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Energy management control strategy of hybrid electric vehicle has a great influence on the vehicle fuel consumption with electric
motors adding to the traditional vehicle power system. As vehicle real driving cycles seem to be uncertain, the dynamic driving
cycles will have an impact on control strategy’s energy-saving effect. In order to better adapt the dynamic driving cycles, control
strategy should have the ability to recognize the real-time driving cycle and adaptively adjust to the corresponding off-line optimal
control parameters. In this paper, four types of representative driving cycles are constructed based on the actual vehicle operating
data, and a fuzzy driving cycle recognition algorithm is proposed for online recognizing the type of actual driving cycle.Then, based
on the equivalent fuel consumption minimization strategy, an ant colony optimization algorithm is utilized to search the optimal
control parameters “charge and discharge equivalent factors” for each type of representative driving cycle. At last, the simulation
experiments are conducted to verify the accuracy of the proposed fuzzy recognition algorithm and the validity of the designed
control strategy optimization method.

1. Introduction

Combined with the feature of traditional gasoline vehicle
and pure electric vehicle, hybrid electric vehicle (HEV)
improves the fuel economy and emission performance while
sustaining enough travel distance, and it has become an
important development direction of automotive industry
[1]. If the energy management control strategy of HEV
can realize the reasonable distribution between the vehicle-
mounted multiple energy power sources, the fuel economy
and emission would be improved, the lifetime of power
battery would be extended, and the vehicle maintenance
cost would be minimized under the requirement for vehicle
dynamic performance [2, 3].

Early energy management control strategy of HEV
includes rule-based strategies and optimization-based strate-
gies [4]. Most of them are usually based on the fixed control
parameters that could not adapt the dynamic driving cycles
[5–7]. The actual energy saving effect seems to be unsatis-
factory. Later, researchers find that the fuel consumption and

emissions are sensitive to the driving cycle variation, and they
start to study driving cycle recognition and adaptive control
strategies in two aspects. One is using global position system
(GPS), car navigation system, car to car communication, and
other approaches to acquire the future road and traffic infor-
mation such as average vehicle speed, road grade, and turning
radius and then obtain the approximate global optimal energy
distribution principles through the dynamic programming or
other optimization algorithms [8]. But this kind of method
needs a complex hardware implementation, and the global
optimization needs large calculating quantity whichmay lead
to a poor real-time performance. There is difficulty in its
popularization and application. Another aspect of research
is utilizing pattern recognition technology to identify the
current type of driving cycle, according to the vehicle state
parameters in the past period of time, such as average speed,
idle time, and maximum acceleration [9]. It is relatively easy
to implement, and this researchmethod is selected to develop
the adaptive control strategy in this paper.
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Figure 1: Remote data acquisition and monitoring system for HEV.

At present, the research on driving cycle recognition
mainly contains neural network, support vector machine
(SVM) and other predictive methods. Engström and Victor
[10] proposed a statistical pattern recognition framework to
analyze the collected vehicle operating data and utilized feed-
forward neural network to classify the actual driving cycle
into four types which are highway, arterial road, subur-
ban, and urban, respectively. But the neural network-based
method required a large number of suitable training samples
to obtain a relatively accurate recognition result. Watanabe
and Katsura [11] proposed an SVM driving cycle recogni-
tion method; it was suitable for the two-class classification
problem, but it was more difficult to solve the multiclass
classification problems. Gong et al. [12] proposed an iterative
Markov chain approach for generating velocity profiles,
which represent the specific driving pattern well based on the
comparison of the phase plot to the typical real driving cycle.
In this paper, a fuzzy driving cycle recognition algorithm
is proposed to lay the foundation for the control strategy’s
adaptive adjustment.

The optimal control parameters in different types of driv-
ing cycles need to be determined after realizing the driv-
ing cycle recognition. The control parameters in present
researches are mainly selected discretely according to the
engineering experience, and then a relatively optimal solution
is obtained through the simulating calculation; the param-
eter optimization result has the potential to be improved.
Generally the optimization algorithm would be used to
solve this kind of parameter optimization problem. As
HEV is a strongly nonlinear complicated system, it takes a
large amount of time for calculating the objective function
according to the vehicle model; the optimization algorithm
should have a fast convergence speed. Therefore, intelligent
optimization algorithms such as genetic algorithm [13, 14],
particle swarm optimization [15, 16], and simulated anneal-
ing algorithm [17] are introduced to solve such parameter
optimization problem. In recent years, swarm intelligence
algorithm did well in solving travelling salesman problem

(TSP) and other NP-complete problems [18–21], and it also
has some applications in the field of optimal control research
[22]. In this paper, utilizing the feature of automatic gain
and accumulating the knowledge about search-space, we
introduce an ant optimization algorithm to solve the HEV
optimal control parameters in each type of driving cycle.

The rest of the paper is structured as follows. In Section 2,
four types of representative driving cycles are constructed
based on the actual vehicle operating data and a fuzzy driving
cycle recognition algorithm is proposed for online recog-
nizing the type of actual driving cycle. Section 3 introduces
basic equivalent fuel consumption minimization strategy
and studies the off-line control parameter optimization in
different driving cycles based on the ant colony optimization
method. Section 4 presents the simulation experiment results
of the designed adaptive control strategy. Section 5 concludes
the presented work.

2. Driving Cycle Classification
and Recognition

To achieve the objective ofmaking control strategy being able
to adaptively adjust according to different types of driving
cycles, the driving cycle classification and recognition should
be implemented in advance. In this section, driving cycles
are classified into four types and representative cycle for each
type is built to reflect the geography and traffic features in
different regions. Then, a fuzzy clustering center matrix and
the corresponding relative membership degree function are
defined to realize the driving cycle recognition.

2.1. Construction of Representative Driving Cycles. The clas-
sification and construction of four types of driving cycles
are based on the independently developed remote data
acquisition andmonitoring system [23]; it has been operating
for nearly five years, as shown in Figure 1. The original
vehicle data are gathered from the hybrid electric buses
on the Dalian Energy Efficient and New Energy Vehicle
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Figure 2: Four representative driving cycles.

Demonstration Project. A large number of reliable vehicle
real-time operating data are collected from the Controller
AreaNetwork (CAN) bus through vehiclemounted terminal.
The data can be divided into four types according to the city
structure features; they are stopngo to represent the traffic jam
cycles in the downtown, urban to represent the low speed flow
in urban areas, suburban to represent themedium speed flow,
and rural to represent the high speed flow in rural areas.

The steps for constructing four types of representative
driving cycles are as follows. First, the microtrips are divided
from the original vehicle speed data (microtrips are defined
as a small driving trip segment from a vehicle idle point to
the next idle point), and the database of the microtrips can be
obtained from the original speed statistic database. Second,
the characteristic parameters of each separate microtrip are
calculated; the principal components and the corresponding
contribution rate of these characteristic parameters can be
obtained by the principal component analysis. Thus the
cluster analysis technique is able to classify themicrotrips into
four cluster centers easily by theses principal components,
and the microtrips which are nearest to the cluster center are
chosen to construct the representative driving cycles. At last,
four types of representative driving cycles are obtained by the
linear combination of these selected microtrips. The results
of the constructed four representative cycles are shown in
Figure 2.

2.2. Fuzzy Recognition of Driving Cycle. The driving cycle
recognition is based on the statistic characteristic parame-
ters of actual driving cycle [24]; the commonly used cycle
characteristic parameters are as follows: cycle average speed,
average driving speed, maximum speed, mean acceleration,

mean deceleration, maximum acceleration, maximum decel-
eration, idle time, the percentage of idle time, number of
stops, and so on. In this paper, average cycle speed 𝑉

𝑚
,

average driving speed 𝑉
𝑚𝑟
, average deceleration 𝐴

𝑑
, average

acceleration 𝐴
𝑎
, and percentage of idle time 𝜂 are selected as

the characteristic parameters for fuzzy recognition of driving
cycle.

The sample driving cycle segment characteristic vector
need to be recognized is expressed as 𝑥 = {𝑉

𝑚
, 𝑉
𝑚𝑟
, 𝜂, 𝐴
𝑎
,

𝐴
𝑑
}
𝑇. Together with four groups of parameters of the typical

driving cycle constructed in Section 2.1, the characteristic
vector is assembled as a matrix𝑋

5×5
to be identified:

𝑋 =

[
[
[
[
[

[

𝑉
𝑚

5.69 10.66 20.67

𝑉
𝑚𝑟

19.59 16.55 23.22

𝜂 0.7093 0.3562 0.1096

𝐴
𝑎

𝐴
𝑑

1.34

−0.88

0.70

−0.76

0.71

−0.65

24.55

27.27

0.0998

0.94

−1.13

]
]
]
]
]

]

= (𝑥
𝑖𝑗
)
5×5

.

(1)

As characteristic vector elements 𝑉
𝑚
, 𝜂, 𝐴

𝑎
are different

in physical dimensions, the matrix to be recognized 𝑋
5×5

should be normalized; the elements to be identified in
the normalized matrix are expressed as (𝑟

𝑖𝑗
)
5×5

, which are
calculated as follows:

𝑟
𝑖𝑗
=

𝑥
𝑖𝑗
− 𝑥
𝑖min

𝑥
𝑖max − 𝑥𝑖min

. (2)

Five index characteristic values of the four representative
driving cycles make up the clustering center of the driving
cycle class. After normalization it can be expressed as stand-
ard fuzzy clustering center matrix (𝑠

𝑖ℎ
)
5×4

in the fuzzy reco-
gnition:

𝑆 =

[
[
[
[
[

[

1.0000 0.7365 0.2057 0.0000

0.7478 1.0000 0.3778 0.0000

0.0000 0.5793 0.9839 1.0000

0.0000

0.2500

1.0000

0.7708

0.9844

1.0000

0.6250

0.0000

]
]
]
]
]

]

= (𝑠
𝑖ℎ
)
5×4
.

(3)

As characteristic parameters have different impact in
the process of driving cycle fuzzy recognition, different
weights of characteristic parameters need to be considered.
So a characteristic indicator weight vector is defined as
𝑊 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

5
) which should satisfy the constraint

conditions of 𝑤
1
+ 𝑤
2
+ 𝑤
3
+ 𝑤
4
+ 𝑤
5
= 1. In this paper,

the characteristic indicator weight vector is selected as𝑊 =

(0.44, 0.34, 0.10, 0.09, 0.03).
After the initialization above, the relative membership

degree 𝑢
ℎ𝑗
of sample 𝑥

𝑗
to the category ℎ (ℎ = 1, 2, 3, 4) is

calculated as follows:

𝑢
ℎ𝑗
=

1

∑
𝑐

𝑘=1
(∑
𝑚

𝑖=1
[𝑤
𝑖
(𝑟
𝑖𝑗
− 𝑠
𝑖ℎ
)]
2

/∑
𝑚

𝑖=1
[𝑤
𝑖
(𝑟
𝑖𝑗
− 𝑠
𝑖𝑘
)]
2

)

.

(4)

So the sample driving cycle segment 𝑥
𝑗
is recognized as

the driving cycle type ℎ which has the maximum relative
membership degree 𝑢

ℎ𝑗
.
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3. Control Parameter Optimization Based on
Ant Colony Algorithm

3.1. Basic Equivalent Fuel ConsumptionMinimization Strategy.
The basic energy management control strategy to be opti-
mized in this paper is ECMS. Its main idea is to multiply
the battery electricity consumption by an equivalent factor
𝛼 and transfer this electric energy to an equivalent vehicle
instantaneous fuel consumption. In every computing interval
𝑡, the total equivalent fuel consumption to be calculated is the
sumof drivemotor’s electric equivalent fuel consumption and
actual engine fuel consumption, which is shown as follows:

𝑚̇eq = 𝑚̇𝑚 + 𝑚̇𝑒, (5)

where 𝑚̇eq is the total equivalent fuel consumptionmass flow,
in kg/s, and 𝑚̇

𝑒
is the actual engine fuel consumption mass

flow which can be calculated as follows:

𝑚̇
𝑒
=

𝑃
𝑒

𝜂
𝑒
⋅ 𝑄
, (6)

where 𝑃
𝑒
is the engine output power, 𝜂

𝑒
is the engine working

efficiency, and 𝑄 is the fuel low caloric value, in J/kg.
𝑚̇
𝑚
is battery’s electric equivalent fuel consumption mass

flow; as the actual power consumption of battery is electricity,

it should be converted to the equivalent fuel consumption
through the following equations:

𝑚̇
𝑚
=

{{{

{{{

{

𝛼dis ⋅
𝑃
𝑚

𝑄
⋅
1

𝜂dis
⋅
1

𝜂
𝑚

, 𝑃
𝑏
> 0

𝛼chg ⋅
𝑃
𝑚

𝑄
⋅ 𝜂chg ⋅ 𝜂

󸀠

𝑚
, 𝑃
𝑏
< 0,

(7)

where 𝑃
𝑚
is the motor output power, when motor works as a

generator it was a negative value; 𝜂dis is the battery discharge
efficiency; 𝜂chg is the battery charge efficiency; 𝜂

𝑚
is themotor

drive efficiency; 𝜂󸀠
𝑚
is the motor generating efficiency; 𝛼dis is

the discharge equivalent factor; 𝛼chg is the charge equivalent
factor.

In (5) the calculated battery equivalent fuel consumption
is not related to the current battery State of Charge (SOC); the
strategy cannot ensure the battery SOC maintaining around
a nominal value and get an acceptable battery efficiency to
preserve battery life. Therefore the motor equivalent fuel
consumption needs to be penalizedwith a nonlinear function
to control the fluctuation range of SOC and ensure the battery
charge balance. Firstly, SOC value in every simple time 𝑡
needs to be normalized as follows:

𝑥SOC (𝑡) =

{{{{

{{{{

{

−1, SOC (𝑡) ≤ SOCmin
SOC (𝑡) − ((SOCmax + SOCmin) /2)

((SOCmax − SOCmin) /2)
, SOCmin < SOC (𝑡) < SOCmax

1, SOC (𝑡) ≥ SOCmax,

(8)

where SOCmax and SOCmin are the battery SOC working
range. To maintain the SOC balance, if the SOC is in a lower
stage, penalty function should enlarge the motor equivalent
fuel consumption 𝑚̇

𝑚
to increase the cost of battery discharge

and decrease the battery charge cost. Therefore the penalty
function of SOC is selected as S-shape high order polynomi-
als:

𝛽 (SOC) = 1 + 1.2(𝑥SOC (𝑡))
4

− 2(𝑥SOC (𝑡))
5

. (9)

Finally, the basic equivalent fuel consumption minimiza-
tion control strategy can be simplified to an optimization
problem in each instantaneous sample time:

𝐽min = min (𝛽 ⋅ 𝑚̇
𝑚
+ 𝑚̇
𝑒
) . (10)

s.t.
𝑃req (𝑡) = (𝑃𝑒 (𝑡) + 𝑃𝑚 (𝑡)) 𝜂𝑡,

𝑃
𝑚 min (𝑡) ≤ 𝑃𝑚 (𝑡) ≤ 𝑃𝑚 max (𝑡) ,

𝑃
𝑒 min (𝑡) ≤ 𝑃𝑒 (𝑡) ≤ 𝑃𝑒 max (𝑡) ,

𝑃
𝑏 min (𝑡) ≤ 𝑃𝑏 (𝑡) ≤ 𝑃𝑏 max (𝑡) ,

(11)

where𝑃req(𝑡) is the driver’s instantaneous power demand; 𝜂
𝑡
is

the drivetrain’s working efficiency; motor output power 𝑃
𝑚
(𝑡)

and engine output power 𝑃
𝑒
(𝑡) should be within a certain

range constrained by the constraint of current operating
speed and battery SOC. The electric motor output power
𝑃
𝑚
(𝑡) is selected as a control variable. Thus, the 𝑃

𝑚
(𝑡) which

satisfy the constraint conditions and make the objective
functionminimum can be solved to determine themotor and
the engine working point.

3.2. Parameter Optimization Problem. In the above ECMS
methods, selection of discharge equivalent factor 𝛼dis and
charge equivalent factor 𝛼chg will directly affect the vehicle’s
utilization of electric energy and eventually have an impact
on vehicle fuel economy. For example, in a congested urban
driving cycle, a smaller equivalent factor will make vehicles
tend to consume electric energy and reduce the engine work-
ing at a low speed with lower efficiency and higher emission.
Therefore, according to the driving cycle recognition result,
the optimal charge and discharge equivalent factors need to
be determined under each type of driving cycle. It means that
parameters of the basic control strategy need to be optimized
to adaptively adjust for a better fuel economy without losing
power performance.

Currently, the widely used control parameter calcula-
tion method is realized by setting a number of disperse
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experimental values and then adjusting the parameter with
trial and error method. And this calculation method always
relies on the engineering experience. Although this method
is practical, it cannot achieve the best efficiency of the power
system.Therefore, it is necessary to introduce an optimization
method to optimize HEV control parameters.

However, classic optimization methods generally require
the objective function to be continuous and differentiable,
and the sawtooth phenomenon leading to a slow convergence
may occur while approaching the optimal solution. HEV is a
complicated nonlinear system; in its control parameter opti-
mization problem, it is difficult to find the optimal solution
rapidly by using these classic optimization methods. Thus,
this paper proposed an ant colony HEV control parameter
optimization method to optimize the charge and discharge
equivalent factor in each type of driving cycle, respectively. It
has features of parallelism and positive feedback, and it can
make full use of the vehicle model information.

This HEV control parameter optimization problem is to
search the best solution for the objective function which
minimizes the overall fuel energy consumption in every
representative driving cycles constructed in Section 2. But
as the charge and discharge equivalent factors are varied in
the parameter optimization, the electric energy consumption
under different parameters should be assessed according to
a unified standard. Therefore we use the battery average
efficiency 𝜂

𝑏
, motor average efficiency 𝜂

𝑚
, and transmission

system average efficiency 𝜂
𝑡
to convert the battery energy

consumption to the oil consumption; it can be expressed as
follows:

𝑚̇
𝑏
=

Δ𝑃
𝑏

𝜂
𝑏
𝜂
𝑚
𝜂
𝑡

. (12)

Then the objective function, total equivalent fuel energy
consumption can be expressed as

min𝐹 (𝑋) = ∫
𝑡

0

(𝑚̇
𝑒
+ 𝑚̇
𝑏
) 𝑑𝑡, (13)

where 𝑋 is the control parameters “charge and discharge
equivalent factors” to be optimized under each type of
driving cycle; generally its value range is from 2 to 3.5. This
optimization problem should satisfy the constraint of driving
cycle’s real-time speed requirement. The objective function
value is the integration of total equivalent fuel consumption
mass flow in (5) at every sample moment of the driving cycle
to be optimized. Rules for ant colony parameter optimization
are as follows.

(1) Ant Initialization. Randomly distribute the given number
of 𝑀 ants in a certain position of the variable definition
domain [𝑎, 𝑏]; each ant 𝑖 is positioned as follows:

𝑥 (𝑖, 𝑘) = 𝑎 (𝑘) +
𝑏 (𝑘) − 𝑎 (𝑘)

𝑀
(𝑖 − 1 + rand) , (14)

where rand is a random number between [0, 1].
The initial pheromone quantity of each ant’s position can

be expressed as

Δ𝜏
𝑋(𝑖)
= 𝑒
−𝐹(𝑋𝑖), (15)

where 𝐹(𝑋
𝑖
) is the objective function value of ant 𝑖.

(2) Ant Travelling Rules.After all the ants accomplish a search-
ing process, one of them will find an optimal position in the
current loop which will be the transfer guide for the rest ants’
travelling in the next loop. So the ants transfer can be divided
into two parts, one is the global search for the ants that have
not found the optimal solutions moving towards the optimal
solution X(Best), its transfer probability and step length is
related to the amount of pheromone and relative positions
of 𝑋(𝑖) and X(Best); the transfer probability is calculated as
follows:

𝑃
𝑖,Best =

𝑒
(𝜏𝑋Best−𝜏𝑋𝑖 )

𝑒
𝜏𝑋Best

. (16)

When ant 𝑖moves to a large quantity of pheromone infor-
mation position, it may find a better optimized solution.Thus
the transfer step length of ant 𝑖 is defined in (16) when it is
moving to the best position X(Best):

𝑋
𝑖
=
{

{

{

𝑋
𝑖
+ 𝜆 (𝑋Best − 𝑋𝑖) , 𝑃

𝑖,Best < 𝑃𝑜

𝑋
𝑖
+ rand (−1, 1) ∗ 𝑏 − 𝑎

𝑀
, otherwise,

(17)

where 0 < 𝜆 < 1, 0 < 𝑃
0
< 1.

Another part of ants transfer is local search of the Best
ant. It randomly searches for a better solution in a small
determined neighborhood. The search radius decreases with
the increase of iterations to find a more accurate solution in
the later search period. The rules for local search are shown
as follows:

𝑋Best = {
𝑋
𝑙𝑠
, 𝐹 (𝑋

𝑙𝑠
) < 𝐹 (𝑋Best)

𝑋Best, otherwise,

𝑋
𝑙𝑠
= {
𝑋Best + 𝜔 ⋅ ̇𝑟, rand (1, 1) < 0.5
𝑋Best − 𝜔 ⋅ ̇𝑟, otherwise,

𝜔 = 1 − 0.4 ⋅
𝑖ter
𝑛max

,

(18)

where 𝑖ter is the current number of iterations and 𝑛max is the
maximum iteration number.

(3) Pheromone Update Rules. When the global and local
search are finished, the pheromone information of every ants’
position needs to be updated as follows:

𝜏
𝑋(𝑖)
= 𝜌 ⋅ 𝜏

𝑋(𝑖)
+ Δ𝜏
𝑋(𝑖)
, (19)

where 𝜌 is the pheromone volatilization coefficient and 0 <
𝜌 < 1, Δ𝜏

𝑋(𝑖)
is calculated in (14).

(4) Solve Procedure of Parameter Optimization.TheHEV con-
trol parameter optimization solving procedure is as follows.

(a) Determine the maximum iteration numbers 𝑛max, the
ant colony size 𝑀, and the value range of control
parameter𝑋.

(b) Initialize current ant colony position and the corre-
sponding pheromone quantity according to (14)-(15).
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(c) Determine the ant at the optimal position 𝑋Best
according to the object function.

(d) The ants that did not find the optimal solutions con-
duct the global search to update ants’ position accord-
ing to (16)-(17).

(e) The ant at the optimal position 𝑋Best does the local
search andupdates optimal position according to (18).

(f) Update the pheromone information with (19).
(g) If the termination condition is satisfied which means
𝑖ter ≥ 𝑛max, then finish the loop andoutput the optimal
solution; otherwise go to step (c).

4. Simulation and Analysis

The ant colony control parameter optimization algorithm
is realized by a Matlab m-language program. The relevant
parameter settings are as follows: maximum iteration num-
bers 𝑛max = 15, ant colony size 𝑀 = 30, control variables
charge, and discharge equivalent factors value range𝑋

1
, 𝑋
2
∈

[1.5, 3.5], 𝜆 = 0.3, 𝜌 = 0.95.
The optimized object is a parallel hybrid electric bus in

this paper; its basic power component’s technical parameters
are shown in Table 1.

Table 1: The parameters of HEV.

Engine DUETZ BF6M2012-22E4

Motor (PMSM)
Speed (rated/peak): 3600/6500 rpm

Power (rated/peak): 30/90 kW
Torque (rated/peak): 80/240N⋅m

Ni-MH battery
Capacity: 40Ah

Number of modules: 28
Nominal voltage: 12 (volt/module)

AMT 5 speed, ratio: 5.785, 3.038, 1.623, 1.00, 0.773

Vehicle Curb weight: 12000 kg
Size: 11996 × 2550 × 3174 (mm)

The objective function Equation (12) is evaluated through
aMatlab/Simulinkmodel. According to the features of hybrid
powertrain and ECMS control method, the vehicle fuel
consumption simulation calculating model is constructed, as
shown in Figure 3.

The input of this simulation model is the four represen-
tative driving cycles constructed in Section 2, respectively,
and the control parameters charge and discharge equivalent
parameters are adjusted by the ant colony optimization
algorithm.While the algorithm’s termination condition is sat-
isfied, the objective fuel consumption calculated by themodel
will beminimized under the corresponding driving cycle.The
parameter optimization process is shown in Figure 4.

With the control parameters varied in the iteration, the
objective function equivalent oil consumption convergence
procedure in four different types of driving cycles are shown
in Figure 5. In this procedure, the ant algorithm adjusts the
power distribution between engine and motor by changing
the value of charge and discharge equivalent factors, so as
to release and recover the electric energy more reasonable
and effective, and to optimize the engine working range while
making the objective function converge to the optimal value.
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Figure 5: The objective function converge procedure in ant colony optimization.

Table 2: The optimal control parameters corresponding to each
typical driving cycle.

The name of driving
cycles

Charge equivalent
factor

Discharge
equivalent
factor

Stopngo 1.52 2.27
Urban 1.56 2.52
Suburban 1.91 3.28
Rural 2.56 3.31

The final optimal value of charge and discharge equivalent
factors under each driving cycle is shown in Table 2.

In order to achieve the purpose of making basic ECMS
have the ability of adaptive adjustment with driving cycle
and greatly improving the vehicle performance, an adaptive
scheme of optimized ECMS is designed in this paper as
shown in Figure 6.

The optimal control parameters and driving cycle recog-
nition part are added into the hybrid electric bus Simulink
strategy model (as shown in Figure 3) to test the control
strategy’s performance.The driving cycle tested in the process
of simulation is the Dalian cycle (as shown in Figure 7(a)).
It is constructed based on a real-time operating database

which was collected from the hybrid electric buses in Dalian
for four years by the remote vehicle-mounted data acquisition
system for new energy vehicle. The total cycle time is 1235 s
and it can reflect the actual geographical and traffic features
of the Dalian area.

While Dalian driving cycle is inputted to the HEV Sim-
ulink model, the strategy module could receive vehicle speed
information from the driving cycle module. The codes in the
strategy module’s Matlab m-file which realized the driving
cycle recognition algorithm proposed in Section 2 calculate
the relative membership degree 𝑢

ℎ𝑗
. Thus the driving cycle

type of microtrips in the recognition period can be identified,
and the optimal equivalent factors can be updated in the
strategy module realizing the adaptive ECMS scheme as
shown in Figure 6. The recognition period is set to be 10 s
in this paper. Recognition results are shown in Figure 7(b).
Types 1, 2, 3, and 4 represent stopngo, urban, suburban and
rural, respectively. From the recognition results, we can see
that the driving cycle type can be identified well; speed and
other characteristic parameter values are in accordance with
the corresponding recognized representative cycle. The real
driving conditions in the Dalian area can be reflected.

Basic ECMS control method is simulated as a contrast
to the optimized adaptive control strategy. This paper is
mainly studying the effect of charge and discharge equivalent
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Figure 7: The driving cycle of Dalian and its recognition result.

factors on the fuel economy, and the vehicle fuel economy
performance results are determined by the energy power
distribution between engine and motor, so the battery power
curve in the whole cycle is the best way to express the
energy distribution and the utilization of electric power. The
contrast of the battery power curve between basic ECMS
and optimized adaptive strategy is shown in Figure 8. From
the result we can see that for the adaptive control strategy
battery charge and discharge are fewer under middle high
speed than those frequent battery charge and discharge in the
basic ECMS. It is because that the charge equivalent factor
is smaller. The discharge equivalent factor is larger in the
middle high speed urban and suburban driving cycles under
the optimized adaptive ECMS, and the cost to charge and
discharge is large for the objective function of ECMS. As a
result, the vehicle tends to use more engines to power the
vehicle and reduce the battery charge and discharge. On the
other hand, the adaptive control strategy tends to discharge
more at a lower speed and charge more at a higher speed; it
is also the consequence of the equivalent factor’s adjustment
under rural and stopngo driving cycles.

The fuel consumption and SOC variation curves are
shown in Figure 9; it shows that the adaptive control strategy
proposed in this paper has a better fuel economy with a bit
lower final SOC; the engine oil consumption is 14% lower
than the basic ECMS.
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Figure 8: Battery power comparison of two control strategies.

5. Conclusion

In this paper, control strategy of HEV is further researched
on the basis of remote data acquisition and monitoring
system. Then an adaptive control strategy based on the ant
colony parameter optimization for HEV is proposed. It can
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adaptively adjust the control parameters according to the
real driving cycle, and it is effective in improving vehicle
fuel economy of hybrid electric vehicle. The main work of
this paper includes: four representative driving cycles are
constructed according to the vehicle operating data for the
past five years; a fuzzy driving cycle recognition algorithm
based on a relative membership degree function is proposed;
for online recognizing the type of actual driving cycle; for
each type of driving cycle, the optimal control parameters
corresponding to each type of driving cycle are determined
by using an ant colony optimization method which can
effectively shorten the control parameter’s adjustment time in
the HEV road test; the validity and accuracy of the algorithm
are verified by the simulation experiments at last. The results
show that according to the on-line driving cycle recognition,
vehicle controller is adjusted to the corresponding optimal
control parameters, which realized the control strategy adap-
tive adjust with the variation of actural driving cycles, and the
proposed control method improves vehicle fuel consumption
effectively.
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